Integration of Machine Learning with Distributed Temperature and Acoustic Sensing to Build Data-Driven Dynamic Reservoir Model

This project will develop practical workflows, algorithms and programming codes for inferring unknown reservoir properties from distributed temperature and acoustic sensing data. In-situ pressure and flow conditions can be interpreted from downhole fiber signals gathered in real time, which are used to estimate unknown heterogeneous reservoir parameters continuously. Machine learning methods will be incorporated to […]

Read More
Use of Jetti Catalysts in Waste Rock/Tailings Treatment

Bio-heap-leaching is a hydrometallurgical process used to process low grade chalcopyrite ore as the cost of alternative routes of processing and refining are not economically viable. However, a viable solution has been found: to add a catalyst that dramatically enhances the kinetics of leaching while not being too expensive, environmentally detrimental or affecting downstream processes. […]

Read More
Application of the Five Capitals Framework to the Mineral Resources Sectorof Mongolia to Support Sustainable Development

The overall goal of the proposed program is the co-development of education programs and academic research with opportunities to apply this understanding in context of SEF/industry activities. The outcomes will benefit SEF’s business activities in Mongolia and other developing countries with significant mineral resource potential. The program will also support investment and business opportunities for […]

Read More
Development of a highly accurate machine learning algorithm constrained by well-log data and its application in Lithological classification

The drilling success rate is the most important goal for any oil/gas company. For a start-up company, any failure in drilling will be a disaster. To this end, the Petro-Lin Energy Corp. wishes that through the combination of mature hydrocarbon prediction techniques and new research results such as machine learning, the success rate of hydrocarbon […]

Read More
An Integrated model of Geomechanics and a Multiporosity Reservoir Simulator to Investigate Improved Recovery Techniques in Shale Reservoirs-Part 2

Shale reservoirs have become a very important source of hydrocarbons, especially in North America. Shales are rocks with very low permeability and therefore, produce the hydrocarbons stored in them is difficult. In order to do it, oil companies have to inject high pressurized fluids to break the rock. But, by using this unique strategy, most […]

Read More
Active Learning for Fish School Recognition in Echograms in the Bay of Fundy

OERA use hydroacoustic echosounder surveys to evaluate the impact on marine life of tidal turbines in the Bay of Fundy. OERA use Echoview software to read in the raw sensor data (e.g. voltages) and convert it to a visual representation. Echoview contains some algorithms to detect the bottom of the ocean. However, the Fundy data […]

Read More
Investigation of Novel HPGR and Size Classification Comminution Circuit

Crushing and grinding rock is the largest consumer of energy at a mining operation. Ball Mill grinding is the main technology that is used for fine grinding, yet it is known to be very inefficient with respect to energy consumptions; estimates are that less than 2% of energy input to ball mills translate into particle […]

Read More
Data Mining and Statistical Analysis of Hydraulic Fracture Performance in the Eagle Ford Formation

As the global supply of oil and gas from conventional reservoirs (i.e., porous rock formations) continues to diminish, it becomes increasingly important to produce these fluids from unconventional (“tight”) reservoirs. Hydraulic fracturing is generally required in order to achieve sufficient production rates from these tight reservoirs. Key questions to be addressed in hydraulic fracture design […]

Read More
Synthesis of Graphene Quantum Dots with Blue and Red Emissions from Albany Graphite

Among various types of graphitic nanomaterials, graphene quantum dots (GQDs) have ignited tremendous interest in the past few years owing to their small lateral size, quantum confinement, and large perimeter per mass. GQDs are categorized based on their emitting colors (e.g. blue, green, yellow, red and white). Among various emitting colors, GQDs with blue and […]

Read More