Conductivity measurements of cardiac tissue using magnetic resonance imaging

The first objective of this project is to obtain the first high resolution impedance measurements of cardiac tissue. These measurements will be synchronized with electrocardiogram to determine quantitatively for the first time the changes of conductivity at different stages of the cardiac cycle. Since the heart is one of the most electrically-active areas inside human […]

Read More
Optimizing adjacent technologies for physical and/or functional integration with UV-based technologies

This research project is directed towards the assessment and development of technologies that will complement the UV technologies provided by Trojan Technologies for water/wastewater treatment.  A novel liquid-solid circulating fluidized bed bioreactor (CFBBR) developed at the University of Western Ontario in collaboration with Trojan Technologies has generated a wide interest for commercial application for biological […]

Read More
Commercialization of a cell stretcher/incubator device

Nowadays, most of cell biomechanics studies based on cell stretching have focused on small stretching magnitude, without the ability to visualize cell behavior and morphology during stretch. We therefor decided to build a cell stretcher/incubator providing the physiological conditions of cell culture (37°C, 5% CO2) while also allowing the application of a wide range of […]

Read More
A novel recessed differential electrode for recording electromyographic activity from the pelvic floor muscles

A novel electrode was developed to measure pelvic  floor muscle activity in women. The novel design addresses several limitations of current technology, which uses large electrodes mounted on vaginal probes. These probes use inappropriate electrode configurations, have large electrodes susceptible to noise from nearby muscles (i.e. crosstalk), and noise from motion of the electrode relative […]

Read More
Development of high-performance electrochemical enzyme biosensors based on carbon nanotube complexes with conjugated polyelectrolytes

A simple and facile route for the construction of highly sensitive electrochemical enzyme biosensors has been proposed using carbon nanotube (CNT) complexes with a conducting poly(thiophene) polymer. Glucose oxidase was used as a model enzyme for the construction of the advanced biosensors. Glucose biosensors, exhibiting sensitivity higher than any biosensor based on CNTs and other […]

Read More
Design of a novel magnetoencephalograph-compatible tracking system for monitoring speech-related orofacial events

Individuals with speech problems face difficulties such as anxiety, poor socialization and poor literacy. Key to effective intervention and therapy is a better understanding of the brain activity associated with speech. Magnetoencephalography (MEG) is a new brain-imaging technology that, for the first time, allows researchers to monitor the fast-changing brain activity involved with speech. The […]

Read More
Developing a prototype electrowetting on dielectric device to perform immunoassays

The goal of this project is to develop a prototype microfluidic device to rapidly determine whether a target protein is present in a sample. Applications of this device include genomic and proteomic research, pharmaceutical testing, and quality control for various industries, including food preparation. The prototype will make use of electrowetting on dielectric (EWOD) actuation, […]

Read More
Cold laser ablation as a novel tool for biodiagnostic applications and biomarker discovery

We have developed a technology platform that allows us to obtain quantitative information regarding biomarkers much faster than currently possible, without the need to use expensive antibodies for detection. Our platform allows for simultaneous detection of many biomarkers at once. This reduces the time and the cost associated with biodiagnosis, and will directly contribute to […]

Read More
Pain-Free Steroid Hormone Extract Analysis Using Digital Microfluidics

Quantitative steroid hormone measurements are a mainstay in the field of clinical endocrinology, due to their effects in myriad processes from maturation to hormone-sensitive cancers. Conventional steroid hormone testing protocols require a venopunture blood draw (~5 mL) followed by a time consuming immunoassay (~2 hr) each time a single  hormone is tested. In response to […]

Read More