Guidance and Control of Hybrid Vertical Takeoff and Landing (VTOL) Unmanned Aerial Vehicles (UAVs) with Thrust Vectoring Capabilities

Quadrotors are one of the most popular choices for unmanned aerial vehicles (UAVs) in situations where fast disturbance rejection, vertical takeoff and landing (VTOL) capabilities, and maneuverability are required. However, the quadrotor is inherently underactuated, and as a result, it is impossible to independently control the orientation and position of the vehicle. One solution to […]

Read More
Exploring surface nanoscale axial photonics resonators for ultrahigh-resolution optical gyroscope applications

We will fabricate cylindrical glass microstructures that keep light traveling in circles for a very long time. The circular trajectory of the confined light changes very sensitively due to rotational motion of the cylinders, and these changes can be measured by detecting angular velocity. Therefore, the project aims at developing these cylinders that allow light […]

Read More
Service Life Predictions for Machined Components of Nickel-based Superalloys

Nowadays in aerospace industry, the main concern is to reach an optimum, reliable, and reproducible manufacturing process with a high predictability of the components’ service life and the lowest production cost. Machining is one of the main manufacturing processes for industrial parts which can change the surface characteristics of materials. The main aspects of these […]

Read More
Automation of Low-Energy Welding Process for Aerospace Applications and Contactless Approach

Mechanical failure is a significant issue in the aerospace industry. High material and manufacturing costs make the component repair an attractive option, avoiding the need to scrap parts when defects are detected. Low Energy Welding (LEW) is a micro-welding process that offers several advantages in repairing sensitive high-cost components. Extensive work has been carried out […]

Read More
A Conceptual Aerodynamic Design for a High-Lift Electric Hybrid Airship

Hybrid airships with vertical take-off and landing (VTOL) capability have the potential to drastically simply the commercial transportation system by picking up payload from the pick-up points and delivering it directly to the pre-set destinations. Development of new electric hybrid airship designs for the Canadian and global transport industry will lead to lower shipping costs, […]

Read More
Development of a new comprehensive simulation tool for helicopter design – The CORAL consortium

Designing a new helicopter is a very complex task that demands the collaboration of many disciplines of aerospace engineering. Nowadays, noise impact has also become crucial as restrictive environmental noise impact certification issues are being enforced by the certification authorities to the manufacturers. This project will be concerned with the integration of all these disciplines […]

Read More
Artificial Intelligence (AI) Powered Adaptive Flight Controller for Novel Unmanned Aerial Vehicle (UAV) with Commercial and Humanitarian Applications

The project entails research into machine learning techniques to control unmanned aerial vehicles (UAVs) with complex flight characteristics for surveillance and cargo transportation applications. In addition, it advances networked UAV fleet control and optimization methodologies to improve the potential of UAV fleets to perform coordinated tasks efficiently and reliably.

Read More
Fly-By-Wire INDI-Based Generic Control Laws for Flexible Civil Transport Aircraft

On the one hand, new generation of civil transport aircraft can present aeroelastic coupling between flight mechanics and structural dynamics. The lower-frequency flexible dynamics can be perceptible by a fly-by-wire (FBW) controller. This requires control law design that takes into account the flexible dynamics. On the other hand, recent developments on feedback linearization by means of […]

Read More
Research and Experimental Testing of Liquid-Injection Thrust Vector Control Actuator (LITVC)

Reaction Dynamics is a small-satellite launch vehicle company aiming to build a launch vehicle using a revolutionary type of rocket propulsion. Launch vehicles rely on a sophisticated Guidance, Navigation, and Control algorithm to precisely navigate and stabilize their vehicle during flight. The company requires an innovative method to accurately deflect the thrust force of the […]

Read More
Reinforcement Learning for Aviation Training

This project seeks to explore the use of a class of artificial intelligence algorithms called reinforcement learning for the purpose of aiding the training of new pilots. In the process, we seek to “teach” an algorithm how to fly an aircraft by exposing the AI pilot to a virtual environment and providing it with flight […]

Read More
Intelligent control of space cameras

The intelligent control of space cameras project is concerned with development of the next generation of space cameras. Currently, there is a large gap between the onboard capabilities of standard commercial cameras and those currently in space (examples include image resolution, onboard storage, advanced scene understanding and exposure control). Closing this gap for space camera […]

Read More