Low Power Design for Ambulatory Physiology Platform

Biopeak Corp, a medical device company, is developing a non-invasive, integrated, sensing platform that would allow people to be monitored for multiple parameters continuously day and night. This presents some major challenges in terms of wearable electronics that can survive several days of use, including size, power management, ease of use and comfort. All these […]

Read More
LED Driver Circuit with Temperature Compensation

In another project directed by Carmanah, the engineering intern devised a strategy that would maximize the operating efficiency of the LEDs over the life of the product they were integrated into. The net effect would be to maintain a brightness that complies to the end user's expectations while broadening the number of sites the product […]

Read More
Railcar Automated Coupling and Switching

Pacific Coast Terminals (in Port Moody, BC) is a highly-automated terminal for the transshipment of bulk materials from railcars to cargo ships. A rotary dumper empties the bulk material in the railcars by tipping their contents onto a conveyor system, in preparation for subsequent shipment. The dumper requires three people for operation: the dumper operator […]

Read More
A Wireless Wearable Multi-parameter Physiology Multi-sensor System

Miniaturization and microintegration is well known for their potentials in providing microsystems and sensors with unmatched performance, reliability, and lower costs. Current technologies in implementation of microsensors, however, span a large variety of platforms. It is thus common for microsensors measuring differing parameters to exist on different combinations of substrates, not to even mention the […]

Read More
Water Stability Control for Optimization of Filtration at Portage la Prairie and Sanford Water Treatment Plants

There are about 180 public water treatment plants in Manitoba relying on surface water as their source of supply. Optimization of water treatment processes offers many operational savings for these plants. Portage la Prairie and Sanford water treatment plants are examples of typical Manitoba water treatment plants. Both plants utilize lime/soda softening processes to remove […]

Read More
Application of Composite Materials to Tidal Turbine Blades

Tidal currents can provide a significant and predictable source of renewable energy. This project will research the use of composite materials for the blades of a tidal turbine to harness this energy. The rotor blades are currently made of steel, which leads to several problems in the marine environment, expensive manufacturing processes and difficulties in […]

Read More
An Improved Wide-Band Dynamic System Equivalent Technique for Real-Time Digital Simulators

Real-time simulators are increasingly important in power system studies and equipment tests by manufacturers, universities, research institutes and power system utilities. Yet their capability for accurately simulating some aspects of very large systems is limited by the burden of additional hardware requirements. Thus, the aim of this project is to develop an improved wide-band system […]

Read More
Application of Spatial Statistics to Quantify Mixing and the Potential for Reaction

Many chemical reactions can produce unwanted byproducts which require additional purification steps and lead to unwanted waste. Additional purification steps consume large amounts of energy, and waste products can have a significant environmental impact. The chemistry can be modified so that the desired products are favored over the unwanted byproducts, and the mixing can be […]

Read More
Understanding the Engineering Design Process

This research project is a study of the engineering design process. The goal is to study the design process at Manitoba Hydro to better understand: how design works, how information flows, and how the process is communicated. The intern’s research team will study the design process from within the organizational environment. This will involve a […]

Read More
Implementation and Validation of Detached Eddy Simulation (DES)

This research aims to enhance an existing aerodynamic simulation tool to provide more accurate simulation data for turbulent flows with massive separation regions. This will be achieved by implementing the Detached-Eddy Simulation (DES) method. The existing turbulence prediction modules rely on simulation of the largest eddy in the fluid domain and modelling of all other […]

Read More
Keywords Detection in Handwritten Documents

The long-term aim of this project is to develop techniques and software for the processing of unconstrained handwritten documents. The short terms goals are 1) the enhancement, “de-noising” and removal of artifacts in degraded digital handwritten document images, 2) text-lines and words segmentation independent of scripts or symbols and 3) identification of a small set […]

Read More