Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreThe ever-growing demand for energy storage, especially with high density and low-cost, has both academia and industry research communities working hard to develop and optimize energy storage technologies. Among the top energy storage technologies are Lithium metal batteries (LMBs) which have an exceptionally high specific capacity (3860 mA h g?1) in comparison to that of the conventional graphite-based LiC6 batteries (372 mA h g?1). In spite of these advantages, uncontrollable dendritic Li growth and limited coulombic efficiency during the charging process hinders the practical applications of LMBs. In response to this challenge, a myriad of engineering strategies have been developed to ensure the largest usable capacity, longest cycle-life and dendrite-free systems. Pulse charging has a great potential for inhibiting dendrite growth, thereby increases the likelihood for the development of practical LMBs. Gbatteries wishes to gain insight on state-of-the-art battery operational dynamics and degradation mechanisms. Therefore, during the proposed project, the Post-doc will research the optimum charging profiles that mitigate dendrite growth and extend the battery’s cycle life. Additionally, they will develop and customize an electrolytic cell that will allow operando dendrite growth observations during cycling to have real-time feedback without having to disassemble the cell.
Elena Baranova
Mohamed Seif Eddine Houache
GBatteries Energy Canada Inc.
Engineering - chemical / biological
Professional, scientific and technical services
University of Ottawa
Elevate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.