Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreThe longer emission wavelengths of red fluorescent proteins (RFPs) make them useful for whole-body imaging because cells are more transparent to red light. However, RFPs are typically less bright than other types of fluorescent proteins that emit at shorter wavelengths due to their lower quantum yields. The goal of this project is to increase the quantum yield of RFPs by rational design. We hypothesized that restricting the conformational flexibility of the RFP chromophore would decrease radiationless decay, thereby resulting in
higher quantum yields. To test this hypothesis, we will increase the packing around the RFP chromophore by sandwiching it between two aromatic residues in a triple decker motif. In order to predict which mutations are needed to introduce the desired pi-stacking interactions, we have used computational protein design (CPD)
algorithms to identify mutations in six residues surrounding the chromophore of mCherry, a widely used monomeric RFP. These mutations, which are predicted to stabilize the chromophore while not destabilizing the protein fold, will be introduced into mCherry using combinatorial mutagenesis, resulting in a mutant library containing ~200 variants, a compromise between ease of screening and sufficient sequence diversity. This library will be expressed in E. coli and screened for fluorescence intensity using a 96-well plate fluorimetric
assay that we have developed. Variants displaying increased brightness will be expressed and purified, and their spectral properties, including quantum yield, will de determined.
Roberto Chica
Eduardo Ramirez
Chemistry
University of Ottawa
Globalink
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.