Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreThe project is aimed at exploring various physical properties on the nanoscale using optical spectroscopy. In particular a focus on Raman and Optical spectroscopy of nano materials and bulk compounds on the nanoscale to better understand the interplay between numerous physical processes. This not only allows us to explore the basic physical underpinnings of novel effects but better characterize and optimize devices. Three different materials will be the focus of this study, high temperature superconductors, topological insulators and semiconductor nano wires. All three offer unique opportunities to study the emergence of new properties as a material is tuned on the nano scale, while also offering dramatic improvements in multifunctional materials, quantum computation, loss-less energy transmission and thermoelectric power generation.
Particular focus will be given to the Raman spectroscopic response of these materials. Raman is a powerful technique as it can measure the lattice, magnetic, thermal and electronic properties of a material simultaneously. Furthermore every material has a unique Raman signature and thus Raman can be used to “fingerprint” an unknown compound or map out the composition over a large area. This is all achieved through the scattering of a focused laser beam, providing spatial resolution of 1 micron. Recently our group has begun to couple a Raman system with a scanning probe microscope enabling us to measure the Raman response with 10nm resolution. This unparalleled performance will provide key insights into the role of nanoscale inhomogeniety in novel properties as well as fully characterize single nano materials (quantum dots, nano wires, exfoliated material). For example this Tip Enhanced Raman Spectrometer (TERS) can simultaneously map the local temperature, strain and chemical composition of a material or device on the nanoscale. These TERS spectra will be acquired while operating the device to better understand the real limits of its performance as well as the origins of novel behaviour that emerges.
Kenneth Burch
Yes
University of Toronto
Globalink Research Internship
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.