Modeling of jointed rock mass using Extended Finite Element Method

The strength and stability of rock is strongly affected by the presence of embedded discontinuities, such as the bedding planes and/or pre-existing macro-fractures. In the latter case, given the scale of the problem the use of homogenization techniques is rather restricted as no direct experimental verification is feasible. Therefore, the issue needs to be addressed at the level of a boundary-value problem. In general, the joints/fractures may be modeled using interface elements within the standard finite element or discrete element methodology. Both of these approaches are computationally costly and there are inherent difficulties associated with the presence of intersecting joints. The proposed research is focused on development of an alternative mesh-independent approach for modeling of jointed rocks. The methodology will involve the use of Extended Finite Element (XFEM) framework, in which the discontinuities are incorporated by enriching the finite element interpolants and introducing a discrete representation of their geometry. The project will result in development of a software package that will allow for an efficient and accurate representation of mechanical properties of fractured rock masses.

Faculty Supervisor:

Stanislaw Pietruszczak

Student:

Sina Moallemi

Partner:

Rocscience Inc

Discipline:

Engineering - civil

Sector:

Information and communications technologies

University:

McMaster University

Program:

Accelerate

Current openings

Find the perfect opportunity to put your academic skills and knowledge into practice!

Find Projects