Modeling and Optimization of roof based BIPV/T with air source heat pump

Incorporating the Air Source Heat Pump (ASHP) into Building Integrated Photovoltaic/Thermal (BIPV/T) system has the potential to reduce building heating and cooling costs and dependence on non-renewable heating fuels. ASHPs could boost the quality and quantity of heat output of a BIPV/T system by delivering a seasonal Coefficient of Performance (COP) of between 2.0 and 4.0, which means 2-4 times more energy output than the amount of energy (electricity) consumed. When used in Canada’s cold climates, however, ASHPs alone have been found to underperform at low temperatures due to the scarcity of heat that may be pumped out of the atmosphere. One solution to this is ASHP which can provide a higher COP at very low winter outdoor temperatures. The incorporation of PV/T + ASHP into building integrated sloped roof, solutions in existing residential and commercial buildings will furthermore have the potential to lower overall costs of such systems, significantly reduce GHG emissions and provide significant economic and other benefits for Canada in general and for southern Ontario and the Greater Toronto Area (GTA) in particular. The proposed research project is to seek the optimal system configuration(s) of the integrated BIPV/T+ASHP system suitable for southern Ontario climate in new and retrofitted house and small commercial building applications. The outcomes of the proposed project are expected to be further promoted and marketed by our partner industry S2E Technologies Inc. for quick and broad adoption of the proposed system(s) in the building sector.

Faculty Supervisor:

Dr. Alan Fung

Student:

Raghad Kamel

Partner:

S2E Technologies Inc.

Discipline:

Engineering - mechanical

Sector:

Energy

University:

Ryerson University

Program:

Accelerate

Current openings

Find the perfect opportunity to put your academic skills and knowledge into practice!

Find Projects