Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MorePulse shaping devices are the key elements for optical signal processing that are capable of reshaping the temporal waveform of optical pulses. The applications of pulse shaping devices include ultrahigh-speed optical telecommunication, ultrafast all-optical computing and information processing, biomedical imaging, and electronic and photonic signal/device characterization and monitoring. For these applications, ultrafast optical waveform shapers capable of synthesizing temporal waveform features down to the sub-picosecond regime are required. These are the optical analogues of electronic function generators, which provide arbitrary user-specified waveforms, but on much longer time scales than those needed for optical purposes.
Optical temporal waveform shaping techniques have been extensively developed in free space (with the use of discrete optical components), as well as in fibres (by means of fibre Bragg and long-period gratings). Integrating the existing pulse shaping techniques on an optical chip is important for developing integrated optical circuits capable of performing a full spectrum of tasks for all-optical signal processing. The proposed research will deal with developing the pulse shaping devices in two material platforms, namely the femtosecond-laser-written glass waveguides and aluminum gallium arsenide (AlGaAs) semiconductor. The first material platform has the benefit of being fibre-compatible, while AlGaAs is a very promising material for integrated optics as it can be made active and used for monolithic integration of the laser sources and detectors on the same chip with other integrated optical devices. Thus, developing integrated pulse shapers for both material platforms is important.
Dr. Stewart Aitchison
Ksenia Dolgaleva
Engineering - computer / electrical
Medical devices
University of Toronto
Elevate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.