Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreThe treatment of chronic conditions accounted for 58% of the annual healthcare spend in Canada in 2012, primarily through the use of pharmaceuticals. However, these are generally best suited to treat acute diseases, as with chronic use, side effects can accumulate over time while therapeutic effects diminish. Neuromodulation of the Peripheral Nervous System (PNS) represents a promising and adaptable treatment alternative to pharmaceuticals in many cases. Such treatments are still in their infancy and are currently dominated (>99.5%) by devices utilizing open-loop stimulation with clinician-led, manual adjustment. A closed-loop system that responds to peripheral nerve activity and other biomarkers in real time would enable dose-sensitive and targeted therapies. However, closed-loop neuromodulation systems face a significant challenge; smart adaptation requires an understanding of how particular nerves encode information to govern the behavior of tissues or organs. New methods must therefore be developed to decode and harness the large volumes of highly complex information transmitted through the PNS. This project will employ the latest findings in machine learning to extract biomarkers from neural data. Semi-supervised training methods will determine how these biomarkers drive physiological responses.
Blake Richards;Guillaume Lajoie
Luke Prince;Olivier Tessier-Larivière
BIOS Health
Computer science
Professional, scientific and technical services
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.