Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Metal-based direct energy deposition processes, such as robotic welding and laser powder fed additive manufacturing, ideally require feedback sensing of the deposition quality using vision detectors. Image processing algorithms are challenging to develop due to changing process operating conditions. Despite challenges, implementing in-process image processing algorithms is beneficial for traceability and quality assurance, for calibrating process models, and for developing closed loop control algorithms which are able to maintain deposition quality within acceptable quality margins. The objective of this research is to develop and integrate feature detection algorithms which are adaptive to the changing operating conditions typically present in metal-based direct energy deposition processes. Such algorithms are directly applicable to low-cost and industrially relevant high dynamic vision detectors. The outcomes will apply directly to future in-process vision-based sensing of features such as, but not limited to, process signatures (melt-pool size and shape, plasma plume characteristics, intensity map, particle ejections) and/or deposition qualities (geometry, continuity).
Mihaela Luminita Vlasea
Gijs van Houtum
Xiris Automation Inc.
Engineering - mechanical
Manufacturing
University of Waterloo
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.