Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreObject detection and classification for surveillance applications via deep neural networks have attracted a lot of interests in computer vision (CV) communities. Accurate and fast CV algorithms can alleviate intensive manual labour and reduce human errors due to fatigue and distraction. In detection problem, the aim is to determine bounding boxes which contain interested objects and classify the category of the detected object. Thus, the detection problem can be formulated as a regression problem to localize multiple objects within a frame. Due to very limited computational budgets on the edge devices, server-side solutions like YOLO and R-CNN are not suitable for embedded devices or high-throughput applications that scale to thousands of cameras. It is challenging to achieve real-time object detection performance while maintaining high accuracy. In this research proposal, we focus on reducing computation latency by developing models with a smaller number of trainable parameters to accelerate object detection and classification. First, we take the advantage of the depth separable convolution layer which has less model complexity. Second, we consider hierarchical processing units to localize multiple objects in one-time forward pass of the neural network.
Rong Zheng
Keivan Nalaie
Caliber Communications
Computer science
Information and communications technologies
McMaster University
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.