Access Network Evolution

Considering the introduction of new network services such as high definition television over the internet protocol (IPTV), new technologies should be introduced and planned in the Bell’s access network to improve the access rate. In this project, to maximize the profitability of the network infrastructure, we propose to explore an access network evolution model (a mixed integer mathematical programming model) to help the network engineers to plan Bell’s access network considering the demand over the time and the introduction of new services.

Study of Connection Times for Air Canada

The objective of the internship is to develop better thresholds for minimum connection times between flights. These thresholds must be large enough to reduce the risk of passengers missing their connecting flights due to flight delays. On the other hand, lengthier connection times lead to increased costs as planes and crews must wait longer between flights. The best compromises will be found by using historical data on flight delays to evaluate the effect of varying thresholds on the plane and crew costs using optimization models.

An Innovative Modular Network Architecture Approach for Network Engineering

The goal of this internship project is to optimize Bell Canada’s network engineering processes to better support the complexity of the company’s network technologies. In this project, to maximize network flexibility and scalability and to minimize the costs, the intern proposes to explore an innovative modular approach for network engineering. Each module will have specific network functions and configurations with the objective of minimizing design and network management costs. It would be then possible to design custom networks for specific clients rapidly with standardized modules.

Constraint Programming based Column Generation for Employee Timetabling

Employee timetabling problems form a large class of widely-encountered issues in service organizations. Often, the issue lies in the design of work shifts, which often have to satisfy many complex regulatory constraints coming from legislation and contractual agreements. The client, Omega Optimisation, was looking for a unified and flexible solution for these shift scheduling problems which address legal issues, activity requirements and labour costs.

A Hierarchic Parametric Geometric Modelling for Aerodynamics Shapes

Bombardier Aerospace, a world-leading manufacturer of innovative transportation solutions, from regional aircraft and business jets to rail transportation equipment, is interested in technology developments that improve aerodynamic design methods. One of their objectives is to improve the process in which aerodynamic parameters are introduced within the optimization process to facilitate the application of geometric and aerodynamic constraints.

Pages