Standard Response Documents Application

Developing a model for a system can come with a lot of uncertainty, especially in the early stages of development. Recent research has be done into removing uncertainty during early stage models. Doctalk plans to use modern research to develop a viable product for market, while contributing to the process of the research being applied to the development of the product.

Deep Collaborative Filtering using two stage information Retrieval

The company wants to develop a state of art recommendation system for the clients. A recommendation system is a piece of software that provides products’ suggestions to customers on a website. For example the products suggestions that can be seen on Amazon’s web page are generated by its recommendation engine.
The typical recommendation engines work by utilizing the existing user-product preferences information. They recommend products to a user by comparing his preferences to other similar users’ preferences. The typical example of this is Users who bought item-A also bought item-B.

Extracting supplier information from the web

Using web crawling technology in coordination with state of the art machine learning techniques, the project aims to mine useful, structured information about the world’s suppliers from the web. Recent advances in artificial intelligence have increased the viability of such autonomous systems for extracting coherent information from arbitrary human-produced content. By leveraging these technologies, our goal is to build improved supplier discovery and recommendation systems.

Generative Models for Financial Time-Series Predictions

The intern will work on applying new advances from the field of Machine Learning to models which make predictions about time-series data. The models have the desirable property modeling the distribution of outcomes in a way that we can sample from, allowing us to account for uncertainty in the model’s predictions. By making more accurate predictions with more accurate gauges of uncertainty, Electronica will be able to construct portfolios which give more desirable risk-adjusted returns to investors.

Development of new techniques for power system model validation and calibration

Dynamic modeling is one of the most important tools for the power system operation and planning purposes. In order to study the behavior of the system, which is subjected to disturbances, a valid knowledge of parameters of system components is essentially required. The objective of this project is to propose an applicable algorithm to identify the parameters of the power system components’ models. For the identification purpose, the actual power systems’ subsections data collected by phasor measurement units (PMUs) are employed.

Automated CNC processing of complex and high-aspect-ratio microfluidic devices for biomedical applications

Disposable microfluidic devices, also known as labs-on-a-chip, made out of plastic materials have seen increasing applications in chemical and biomedical analysis. In most applications, microfluidic devices usually incorporate small channels and chambers for micro sized dimensions, using heights between a few hundred to a few micrometers. Currently, manufacturing processes have been established to create these sub-millimeter deep features. However, in other applications, higher (or deeper) features of a few millimeters may be needed.

Applied Machine Learning for Malware and Network Intrusion Detection

Wedge Networks is a leading cybersecurity solution provider in Canada. In this project, we aim to investigate the application of statistical machine learning and deep learning to cyber threat detection, aiming to detect both network intrusions and malware binaries transmitted in the network.

Enhancing Lateness Management in Cross-docking

Today's marketplace is moving faster than ever, and companies are challenged to distribute their products more quickly, efficiently and cost-effectively. This has led to the rise of cross-docking in the global supply chain to help keep pace with customer demand. Cross-docking refers to the practice of unloading goods or materials from an incoming vehicle (e.g., train car, truck, vessel container) and then loading them directly onto outbound vehicles with no storage in between.

Enhancing Lateness Management in Cross-docking

Today's marketplace is moving faster than ever, and companies are challenged to distribute their products more quickly, efficiently and cost-effectively. This has led to the rise of cross-docking in the global supply chain to help keep pace with customer demand. Cross-docking refers to the practice of unloading goods or materials from an incoming vehicle (e.g., train car, truck, vessel container) and then loading them directly onto outbound vehicles with no storage in between.

Prototype Behavior Based Integrity Verification (BBIV)

Web computing, in which the world-wide web is itself employed as a distributed computing platform, is entering a stage of rapid expansion with the advent of Open Web Platform so that programs that once worked only a native environment on desktop, tablets or phones can now work from within a browser itself. There is therefore a need for a new form of protection for apps.

Pages