Assessing soil parameters using reflectance spectroscopy

The goal of the research undertaken as part of this project is to develop a system to measure soil properties in the field based on near infrared light reflectance. Using machine learning, the complex near infrared data can be turned into valuable soil analytical data. By supporting this research, Route 7 Inc. will obtain an innovative portable soil measurement system that will provide data on soil immediately in the field for much cheaper than currently used laboratory analytical testing. Using this system, Route 7 Inc.

Surface Rights in the Dasiqox Tribal Park

Just months the June 2014 the Supreme Court of Canada decision granting partial title to the Tsilhqot’in First Nation’s land claim, the communities of Xeni Gwet’in and Yunesit’in, with support form the Tsilhqot’in National Government, declared another traditional area, just beyond the granted claim, as the Dasiqox Tribal Park. The surface area of the new park contains a barrier to Tsilhqot’in self-governance in the form of an undetermined amount of mineral claims staked under the mineral tenure system of British Columbia.

Early warning indicators as tools for freshwater monitoring

A myriad of environmental stressors are threatening freshwater ecosystems. However, monitoring the impacts of these stressors on economically and culturally important native fish populations remains a challenge. Ontario is a large province with hundreds of thousands of lakes, yet knowledge of ecological structure across lakes is limited, particularly for remote lakes in the Far North. The proposed research seeks to develop new, cost-effective indicators of fish population and freshwater ecosystem change, which are based on food web theory.

Integrated hydrodynamic and water quality modelling tool for the Toronto Waterfront - Year Two

The goal of this project is to develop the first ever high definition integrated water circulation and water quality model for the Toronto Waterfront. As one of the most urbanized freshwater ecosystems with complex geometries and physical processes, Toronto Waterfront is in an urgent need for modern scientific tools that can support effective environmental management strategies and inform design of costly new development and restoration projects that have considerable socioeconomic implications.

Improving in-situ SVE remediation process through an integrated stochastic simulation-optimization system at the Cantuar sitea

This project is to help SaskEnergy characterize the pollutant transport behaviors under the remediation process of SVE through advanced modelling system. Such a modelling system employs a series of stochastic analysis methods to quantify the random features in the subsurface at Cantuar site such as the porosity, hydraulic conductivity and so on. Then, relationships (or functions) between SVE control variables and pollutant concentrations are generated through advance statistical methods.

Development, application, and testing of an environmental fate model for assessing wastewater remediation capacity of treatment wetlands

The development of the oil sands has led to a large consumption of freshwater in Canada. The wastewater that is produced is contaminated with many industrial pollutants leading the provincial government of Alberta to issue a “zero-discharge” policy for untreated wastewater. This project will investigate treatment wetlands as an option for reclaiming oil sands-related wastewater.

Testing efficacy of bird deterrents for use at wind energy facilities

For this project the intern will place a predator owl deterrent at the base of a wind turbine and hang nest boxes at a distance of at least 200 m from a wind turbine. The expected result of implementing the predator owl and the nest boxes will be a decline in bird mortalities occurring at three wind-energy sites in Nova Scotia. These sites will be monitored for 12 weeks during spring and fall 2016 bird migration periods (May 16th – June 10th & August 15th – October 7th).

Long-Term Ecosystem Monitoring of the British Columbia Coast across a Gradient of Human Stressors - Year Two

Proposed developments (pipelines, super-tankers) along the coast of BC have the potential to negatively impact (shell)fisheries. Direct monitoring of fisheries can only detect negative impacts which have already occurred; therefore, indicator species (meiofauna) and environmental variables are monitored to detect disturbances before productivity is impacted. Our project will monitor intertidal ecosystems (numerous species and environmental variables) spanning the entire coast of BC, across a gradient of human impacts, long term.

Life Cycle Assessment of Diesel Fuel Production from Woody Biomass in Nova Scotia

As concerns grow globally about resource scarcity and the impacts of climate change, there is greater need to develop alternative energy systems to support our economic activities. As new technologies are developed, there is also a need to fully understand their potential environmental benefits and impacts so we can make design improvements and so governments and consumers can make informed choices. CelluFuel Inc. is a Nova Scotia-based start-up company looking to produce biodiesel made from wood wastes from forestry activities as a substitute for diesel in heavy-duty vehicle transport.

Rethinking Seafood Production: Developing Sustainable Communities with Land-Raised Fish

Tides Canada strives to connect researchers and initiatives across the Canada to take on tough social and environmental challenges. The program support of Tides Canada will bring high-level research from the three interns under the guidance of Mark Roseland, an expert in sustainable community development. Our collaboration will unveil new resources for Tides Canada?s community based aquaculture projects and provide innovative solutions to implement aquaculture technology with community development as the primary focus.

Pages