Investigation of electrochemical post-processing procedure for Ti-6Al-4V lattice structure manufactured by Direct Metal Laser Sintering (DMLS)

Additive manufacturing that is commonly called 3D printing has been identified as the 3rd industrial revolution because the outstanding flexibility that it brings to designer in the industry. Because the part is printed layer by layer, almost any complex geometry that can?t be made by conventional methods can be fabricated in a wide range of material like polymer, metal and ceramics. On the other hand, a major drawback of this technology limits its application in real engineering scenario in the industry and it?s the surface roughness of the printed part.

Thermo-economic assessment and experimental investigation of renewable energy based NH3 production options for clean energy communities

Production and utilization of ammonia in the transportation and power generation sector brings numerous advantages by introducing environmentally friendly, sustainable and efficient systems. Ammonia (NH3) is the only carbon-free chemical energy carrier together with hydrogen suitable for use as a transportation fuel. In this project, renewable energy based NH3 production methods are investigated for power generation, transportation and energy utilities. Specifically, concentrated solar energy based electrochemical ammonia synthesis is experimentally investigated.

Development of an advanced modeling platform for assessing chemical and mechanicalmembrane durability in polymer electrolyte membrane fuel cells - Year Two

Hydrogen powered polymer electrolyte membrane fuel cells (PEMFCs) are a clean energy technology that generates electricity without harmful emissions at the point of use. To accelerate commercialization, current R&D efforts mainly target reduced cost and increased lifetime. The proposed research project addresses both aspects by developing a unified chemical and mechanical modeling platform for evaluating membrane durability in PEMFCs. The core validation is based on extensive test and field data provided by our industry partner, Ballard Power Systems.

Radio Acoustical Virtual Environment: from Lab to Field

Verbal communication in noise while wearing hearing protection devices (HPDs) is often difficult. Recently, a “Radio Acoustical Environment” (RAVE) was developed within the EERS-ETS Industrial Research Chair in In-Ear Technologies (CRITIAS) to enhance communication for people wearing HPDs in noise. With RAVE, speech is captured from inside the ear, denoised, and enhanced to be sent only to listeners within a given spatial range. This range is determined based on the changes in the talker’s vocal effort and background noise level. Currently, RAVE is at its prototype stage.

Study of Ultra-High By-Pass Ratio turboengine integration and noise reduction with Large Eddy Simulations.

Jet noise is still the main contributor in airplane noise at take-off, which has been shown to induce health problems in the residents near airports that are now embedded in most large cities such as Toronto or Montreal. Engine manufacturers are now considering the Ultra-High Bypass Ratio (UHBR) type engine to further reduce noise. Yet the UHBR is a large shrouded fan configuration, having strong interactions with wings while integrated into the airframe.

Power transducer improvement for Etalim TAC heat engine

Etalim is a Canadian high technology company developing a breakthrough heat engine generating electricity from any fuel or heat source. The Etalim TAC (Thermal Acoustic Converter) is a unique technology that converts any high temperature gradient to electricity, with high efficiency (20%-30%) and simplicity. The TAC represents a unique class of device that combines principles of thermodynamics, high-amplitude acoustics, mechanical resonance and materials science in a unique way.

Theoretical investigation of Asphaltene/Wax precipitation and deposition from crude oil: Study involving Nucleation kinetics and Bulk/Interfacial properties

The pipeline transport sector is facing the issue of precipitation of unwanted heavy molecular compounds namely asphaltene and wax eventually leading to deposit along the inner walls of the pipeline. This consumes a lot of energy and maintenance cost. The objective of this work is to provide a solution to inhibit the precipitation of these compounds by theoretically investigating the root cause of the problem. The present study focuses on investigation at both molecular scale level involving Nucleation kinetics and macroscopic level by studying bulk/interfacial properties of the system.

Large-Area High-Performance Transparent Electrodes for Pen/Touch Sensor Research

Transparent electrodes (TEs) combine high optical transparency and electrical conductivity, useful in different devices such as light-emitting diodes, displays and solar cells. A highly competitive market of electronic devices, such as phones and flexible touch screens as well as a worldwide increasing demand for energy, drives research to improve the performance of TEs. However, mass production of high-performance TEs is expensive due to costly materials and fabrication techniques.

Multi-point shear-stress measurements on an impulsively started cylinder

Envenio is a Canadian company that specializes in advanced analysis of fluid dynamics and fluid structure interaction in the technological and environment settings. Envenio is also a software development company that owns an advanced Computational Fluid Dynamics solver, EXN/Aero, that uses many core technology in the parallel computation of unsteady and fully turbulent flows. Envenio seeks experimental data to validate their unsteady separation codes. To this end, an intern in Dr.

Gearbox fault detection and failure prediction

The objective of the project is to develop an automated monitoring system to accurately and reliably detect deterioration within gearboxes operating on an industrial forming line. This will involve reviewing, developing and testing one or more methodologies based on vibration signal measurement and analysis. In particular the work will focus on exploring existing potential methods, defining the capabilities of different sensors that could be used in the given environment and developing appropriate vibration signal analysis algorithms for gearbox deterioration detection and decision making.

Pages